Robust learning control for robotic manipulators with an extension to a class of non-linear systems
نویسندگان
چکیده
A robust learning control (RLC) scheme is developed for robotic manipulators by a synthesis of learning control and robust control methods. The non-linear learning control strategy is applied directly to the structured system uncertainties that can be separated and expressed as products of unknown but repeatable (over iterations) state-independent time functions and known state-dependent functions. The non-linear uncertain terms in robotic dynamics such as centrifugal, Coriolis and gravitational forces belong to this category. For unstructured uncertainties which may have non-repeatable factors but are limited by a set of known bounding functions as the only a priori knowledge, e.g the frictions of a robotic manipulator, robust control strategies such as variable structure control strategy can be applied to ensure global asymptotic stability. By virtue of the learning and robust properties, the new control system can easily ful® l control objectives that are di cult for either learning control or variable structure control alone to achieve satisfactorily. The proposed RLC scheme is further shown to be applicable to certain classes of non-linear uncertain systems which include robotic dynamics as a subset. Various important properties concerning learning control, such as the need for a resetting condition and derivative signals, whether using iterative control mode or repetitive control mode, are also made clear in relation to di erent control objectives and plant dynamics.
منابع مشابه
Optimal discrete-time control of robot manipulators in repetitive tasks
Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design an optimal discrete-time control of robot manipulator since the robot manipulator is highly nonlinear and uncertain. This paper presents a novel robust optimal discrete-time control of electrically driven robot manipulators for performing repetitive tasks. The robot performs repetit...
متن کاملDiscrete-time repetitive optimal control: Robotic manipulators
This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control law is in the class of torque-based control in which the joint torques are generated by permanen...
متن کاملGravity-Compensated Robust Control for Micro-Macro Space Manipulators During a Rest to Rest Maneuver
Many space applications require robotic manipulators which have large workspace and are capable of precise motion. Micro-macro manipulators are considered as the best solution to this demand. Such systems consist of a long flexible arm and a short rigid arm. Kinematic redundancy and presence of unactuated flexible degrees of freedom, makes it difficult to control micro-macro manipulators. This ...
متن کاملAn Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload
In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...
متن کاملDesigning a Robust Control Scheme for Robotic Systems with an Adaptive Observer
This paper introduces a robust task-space control scheme for a robotic system with an adaptive observer. The proposed approach does not require the availability of the system states and an adaptive observer is developed to estimate the state variables. These estimated states are then used in the control scheme. First, the dynamic model of a robot is derived. Next, an observer-based robust contr...
متن کامل